Title: Significant effects of temperature on the reproduction output of the forest herb Anemone nemorosa L
Authors: De Frenne, P. ×
Graae, B.J.
Kolb, A.
Brunet, J.
Chabrerie, O.
Cousins, S.A.O.
Decocq, G.
Dhondt, R.
Diekmann, M.
Eriksson, O.
Heinken, T.
Hermy, Martin
Jôgar, Ü.
Saguez, R.
Shevtsova, A/
Stanton, S.
Zindel, R.
Zobel, M.
Verheyen, K. #
Issue Date: 2010
Publisher: Elsevier Scientific Pub. Co.
Series Title: Forest Ecology and Management vol:259 issue:4 pages:809-817
Abstract: Climate warming is already influencing plant migration in different parts of the world.Numerous models have been developed to forecast future plant distributions. Few studies, however, have investigated the potential effect of warming on the reproductive output of plants. Understorey forest herbs in particular, have received little attention in the debate on climate change impacts.
This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seed mass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slow colonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 km latitudinal gradient from northern France to northern Sweden during three growing seasons (2005, 2006 and 2008). This study design allowed us to isolate the effects of accumulated temperature (Growing Degree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seed sowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally, we disentangled correlations between the different reproductive traits of A. nemorosa along the
latitudinal gradient.
We found a clear positive relationship between accumulated temperature and seed and seedling traits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient.
Seedmass and seedling mass, for instance, increased by 9.7% and 10.4%, respectively, for every 1000 8C h increase in GDH.Wealso derived strong correlations between several seed and seedling traits both under field conditions and in incubators. Our results indicate that seed mass, incubator-based germination percentage (Germ%Inc) and the output of germinable seeds (product of number of seeds and Germ%Inc divided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes)
provide valuable proxies to parameterize key population processes in models.
We conclude that (1) climate warming may have a pronounced positive impact on sexual reproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit from including the temperature sensitivity of key seed traits and population processes.
ISSN: 0378-1127
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division Forest, Nature and Landscape Research
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
DeFrenne.pdf Published 454KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science