This item still needs to be validated !
Title: The acetic acid forming channel in the acetone plus OH reaction: A combined experimental and theoretical investigation
Authors: Vandenberk, Sabine
Vereecken, Luc
Peeters, Jozef # ×
Issue Date: 21-Jan-2002
Publisher: Royal soc chemistry
Series Title: Physical Chemistry Chemical Physics vol:4 issue:3 pages:461-466
Abstract: In a flow reactor molecular beam sampling mass spectrometry investigation of the elementary reaction of acetone with OH at 290 K, no significant production of acetic acid could be measured; absolute calibrations result in a branching fraction of the OH-addition/CH3-elimination channel of at most 5%. In a theoretical study of the acetone + OH reaction, the potential energy profiles of the OH-addition/CH3-elimination channel, the direct H-abstraction channel, and the indirect H-abstraction path via a hydrogen-bonded OH-acetone complex, were characterized at the B3LYP-DFT/6-31G(d,p) and B3LYP-DFT/6-311++G(d,p) levels of theory, with single-point CCSD(T)/6-311++G(2d,2p) energy calculations. At all levels, the barrier for OH-addition is found to be 6 +/- 0.5 kcal mol(-1), and at least 2.5 kcal mol(-1) higher than that for the H-abstraction channels. Transition state theory and RRKM - master equation calculations indicate that the OH-addition channel is negligible at all relevant atmospheric temperatures. These results are in disagreement with recent reports that the OH-addition/CH3-elimination channel contributes about 50% at room temperature.
ISSN: 1463-9076
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science