Title: Binaural unmasking for multi-channel stimuli in bilateral cochlear implant users
Authors: Van Deun, Lieselot ×
Van Wieringen, Astrid
Francart, Tom
Büchner, Andreas
Lenarz, Thomas
Wouters, Jan #
Issue Date: Oct-2011
Publisher: Springer-Verlag New York Inc.
Series Title: Journal of the Association for Research in Otolaryngology vol:12 issue:5 pages:659-670
Abstract: Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.
ISSN: 1525-3961
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Group Experimental Oto-rhino-laryngology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science