Title: Growth hormone secretagogues in critical illness
Authors: Van den Berghe, Greet # ×
Issue Date: Jan-1999
Series Title: Hormone research vol:51 Suppl 3 pages:21-8
Abstract: Alterations within the somatotropic axis occurring during the course of critical illness follow a biphasic pattern. The initial stress response consists of activated growth hormone (GH) release whereas circulating levels of GH-dependent insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 fall and IGFBP-1 concentrations rise. In contrast, in the chronic intensive care-dependent phase of severe illness, pulsatile GH secretion substantially decreases whereas the non-pulsatile fraction remains relatively elevated, resulting in an abnormally flat GH secretory pattern and low-normal mean nocturnal GH serum concentrations. Specifically the reduced amount of GH released in pulses is found to be related to low circulating levels of IGF-I, IGFBP-3 and acid-labile subunit (ALS), which suggests that a relative hyposomatotropism may participate in the pathogenesis of the wasting syndrome distinctively in the chronic phase of critical illness. The relative hyposomatotropism seems at least in part of hypothalamic origin since the whole somatotropic axis has been found to be very responsive to continuous infusion of GH releasing peptide (GHRP), administered alone or in combination with GH releasing hormone (GHRH), as evidenced by reactivated pulsatile GH secretion followed by substantial increases in circulating levels of IGF-I, IGFBP-3 and ALS. GHRH alone, however, is unable to exert the same effect, which may point to an underlying reduced availability of the endogenous ligand for the GHRP receptor. The presence of considerable responsiveness to restored endogenous pulsatile GH secretion using GHRPs not only further delineates the distinct pathophysiological paradigm of the chronic phase of critical illness, as opposed to the acute phase, which is thought to be primarily a condition of GH resistance, but may also have important therapeutic consequences. Recent data revealed that this novel strategy evokes metabolic improvement related to the balanced endocrine responses. Whether GH secretagogues also enhance clinical recovery of protracted critically ill patients remains to be elucidated. Copyright Copyright 1999 S. Karger AG, Basel
ISSN: 0301-0163
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Intensive Care Medicine
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science