Title: Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers
Authors: Caro, Arantxa Maestre ×
Armini, Silvia
Richard, Olivier
Maes, Guido
Borghs, Gustaaf
Whelan, Caroline M
Travaly, Youssef #
Issue Date: Apr-2010
Publisher: Wiley-VCH Verlag GmbH
Series Title: Advanced Functional Materials vol:20 issue:7 pages:1125-1131
Abstract: A 3-aminopropyltrimethoxysilane-derived self-assembled monolayer (NH(2)SAM) is investigated as a barrier against copper diffusion for application in back-end-of-line (BEOL) technology. The essential characteristics studied include thermal stability to BEOL processing, inhibition of copper diffusion, and adhesion to both the underlying SiO2 dielectric substrate and the Cu over-layer. Time-of-flight secondary ion mass spectrometry and X-ray spectroscopy (XPS) analysis reveal that the copper over-layer closes at 1-2-nm thickness, comparable with the 1.3-nm closure of state-of-the-art Ta/TaN Cu diffusion barriers. That the NH(2)SAM remains intact upon Cu deposition and subsequent annealing is unambiguously revealed by energy-filtered transmission electron microscopy supported by XPS. The SAM forms a well-defined carbon-rich interface with the Cu over-layer and electron energy loss spectroscopy shows no evidence of Cu penetration into the SAM. Interestingly, the adhesion of the Cu/NH(2)SAM/SiO2 system increases with annealing temperature up to 7.2 J m(-2) at 400 degrees C, comparable to Ta/TaN (7.5 J m(-2) at room temperature). The corresponding fracture analysis shows that when failure does occur it is located at the Cu/SAM interface. Overall, these results demonstrate that NH(2)SAM is a suitable candidate for subnanometer-scale diffusion barrier application in a selective coating for copper advanced interconnects.
ISSN: 1616-301X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
Semiconductor Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science