ITEM METADATA RECORD
Title: Regulatory volume decrease in a renal distal tubular cell line (A6). I. Role of K+ and Cl-
Authors: De Smet, Patrick ×
Simaels, Jeannine
Van Driessche, Willy #
Issue Date: Oct-1995
Publisher: Springer-Verlag
Series Title: Pflügers Archiv: European Journal of Physiology vol:430 issue:6 pages:936-44
Abstract: Changes in volume of A6 epithelial cells were monitored by recording cell thickness (Tc). The response of Tc to a reduction of the basolateral osmolality from 260 to 140 mosmol/kg was recorded while transepithelial Na+ transport was inhibited by 20 microM amiloride. With Cl--containing bathing media, this osmotic challenge elicited a rapid rise in Tc followed by a regulatory volume decrease (RVD). Substitution of SO4(2-) or gluconate for Cl- markedly reduced the RVD, whereas cells completely maintained their ability to regulate their volume after replacing Cl- by NO3(-). A conductive pathway for Cl- excretion is suggested, which is insensitive to NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid], an inhibitor of some types of Cl- channels. Ba2+ (5 or 20 mM) reduced the RVD. A more pronounced inhibition of the RVD was obtained with 500 microM quinine, a potent blocker of volume-activated K+ channels. K+-induced depolarization of the basolateral membranes of tissues incubated with SO4(2-)-containing solutions completely abolished the RVD. Noise analysis in the presence of Ba2+ showed the activation of an apical K+ conductive pathway. These results demonstrate that cell volume regulation is controlled by processes involving Cl- and K+ excretion through conductive pathways.
ISSN: 0031-6768
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Cellular and Molecular Medicine - miscellaneous
Physiology Section (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.