Title: Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution
Authors: Saimoto, S ×
Van Houtte, Paul #
Issue Date: Jan-2011
Publisher: Elsevier Science
Series Title: Acta Materialia vol:59 issue:2 pages:602-612
Abstract: A constitutive relation based on crystal plasticity was derived by equating the energy of dislocations required to generate the imposed incremental strain with that which was stored as determined from the flow stress. The dynamic annihilation of created dislocations was accounted for by using a factor to balance the equation. The specific case of Taylor's parabolic relation was reproduced and microstructure-based parameters were explicitly formulated in the proportionality constant usually attributed as empirical in the Hollomon relation. The nearly precise replication of the stress-strain relation using at least two curve-fits for aluminum and its alloys validates the quantitative determination of the mean slip distance. The intersection of the two fits appears to be analogous to Stage II to III transition, which was confirmed by analysis of [1 1 1] and [1 0 0] single-crystal studies taken from the literature. The correlation of the flow stress with inverse mean slip distance and deformation cell size, together with the measured stored work, permitted an insight into this Stage II to III transition. The analysis suggests that dynamic-recovery effect in Stage III may be attributed to the change in mean slip distance pattern due to the evolution of cells. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ISSN: 1359-6454
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Mechanical Metallurgy Section (-)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
pub05434.pdfMain article Published 1210KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science