ITEM METADATA RECORD
Title: Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia
Authors: Krutskikh, Anton ×
De Gendt, Karel
Sharp, Victoria
Verhoeven, Guido
Poutanen, Matti
Huhtaniemi, Ilpo #
Issue Date: Feb-2011
Publisher: Association for the Study of Internal Secretions
Series Title: Endocrinology vol:152 issue:2 pages:689-96
Abstract: The epithelial lining of the epididymal duct expresses the androgen receptor (Ar) along its entire length and undergoes rapid and profound degeneration when androgenic support is withdrawn. However, experiments involving orchidectomy with systemic testosterone replacement, and testicular efferent duct ligation, have indicated that structural and functional integrity of the initial segment cannot be maintained by circulating androgen alone, leaving the role of androgen in this epididymal zone unclear. We addressed this question in a mouse model with intact testicular output and selective Ar inactivation in the proximal epididymis by creating double-transgenic males carrying a conditional Ar(loxP) allele and expressing Cre recombinase under the promoter of Rnase10, a gene specifically expressed in proximal epididymis. At 20-25 d of life, on the onset of Rnase10 expression, Ar became selectively inactivated in the principal cells of proximal epididymis, resulting in epithelial hypoplasia and hypotrophy. Upon the subsequent onset of spermiation, epididymal obstruction ensued, with the consequent development of spermatic granulomata, back pressure-induced atrophy of the seminiferous epithelium, orchitis, and fibrosis of the testicular parenchyma. Consistent with these findings, the mice were infertile. When the effect of Ar knockout on gene expression in the proximal epididymis was compared with that of efferent duct ligation and orchidectomy, we identified genes specifically regulated by androgen, testicular efferent fluid, and both. Our findings demonstrate that the development and function of the epididymal initial segment is critically dependent on direct androgen regulation. The phenotype of the produced knockout mouse provides a novel model for obstructive azoospermia.
URI: 
ISSN: 0013-7227
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical and Experimental Endocrinology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science