Title: Impaired osteoblastogenesis potential of progenitor cells in skeletal unloading is associated with alterations in angiogenic and energy metabolism profile
Authors: Vandamme, Katleen ×
Holy, Xavier
Bensidhoum, Morad
Deschepper, Mickael
Logeart-Avramoglou, Delphine
Naert, Ignace
Duyck, Joke
Petite, Hervé #
Issue Date: 2012
Publisher: Pergamon Press
Series Title: Bio-medical Materials and Engineering vol:22 issue:4 pages:219-226
Abstract: Skeletal unloading provokes bone loss. These bone alterations have been shown to be associated with impairment of osteoblastic activity. In the present study, we evaluated the effect of skeletal unloading on bone marrow progenitor cells, for exploration of the underlying mechanism. Wistar rats were randomized to be either hindlimb unloaded for 9 days or to act as controls. Micro-CT was used to detect tibial trabecular architecture changes in response to skeletal unloading. Microgravity conditions for 9 days resulted in a decreased number and an increased spacing of the bone trabeculae in the proximal tibia. The proliferative capacity of the femoral bone marrow samples was assessed (fibroblast-colony-forming assay). By using qPCR, the expression of selected markers of vascularization (Vegfa; Hif1a; Angpt1), energy metabolism (Prkaa2; Mtor), bone formation (Runx2; Alp; Bglap; Bmp2; Bmp4; Bmp7) and bone resorption (Acp5; Tnfsf11; Tnfrsf11b) in these bone marrow suspensions was measured. We demonstrated a striking decrease in the number of fibroblastic progenitors in response to hindlimb unloading. This deficit in proliferation was shown to be accompanied by altered hindlimb perfusion and cellular energy homeostasis. Ex vivo culture assays of the bone marrow-derived progenitor cells screened for osteogenic (Runx2; Alp; Bglap) and adipogenic (Pparg; Fabp4) differentiation alterations in response to microgravity. Induced progenitor cells from unloaded rats showed a delay in osteogenic differentiation and impaired adipogenic differentiation compared to control. The data of this multi-level approach demonstrate that skeletal unloading significantly affects the bone tissue and its metabolism at the progenitor stage. The molecular expressions of the bone marrow population support a role of cellular metabolic stresses in skeletal alterations induced by inactivity.
ISSN: 0959-2989
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Prosthetics
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Vandamme - 2012 -Impaired osteoblastogenesis - Bio-Medical_Materials_and_Engineering.pdf Published 412KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science