This item still needs to be validated !
Title: Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D
Authors: St-Arnaud, Rene ×
Arabian, Alice
Travers, Rose
Barletta, Frank
Raval-Pandya, Mihali
Chapin, Kelli
Depovere, Jos
Mathieu, Chantal
Christakos, Sylvia
Demay, Marie
Glorieux, Francis #
Issue Date: Jul-2000
Series Title: Endocrinology vol:141 issue:7 pages:2658-66
Abstract: The 25-hydroxyvitamin D-24-hydroxylase enzyme (24-OHase) is responsible for the catabolic breakdown of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of vitamin D. The 24-OHase enzyme can also act on the 25-hydroxyvitamin D substrate to generate 24,25-dihydroxyvitamin D, a metabolite whose physiological importance remains unclear. We report that mice with a targeted inactivating mutation of the 24-OHase gene had impaired 1,25(OH)2D catabolism. Surprisingly, complete absence of 24-OHase activity during development leads to impaired intramembranous bone mineralization. This phenotype was rescued by crossing the 24-OHase mutant mice to mice harboring a targeted mutation in the vitamin D receptor gene, confirming that the elevated 1,25(OH)2D levels, acting through the vitamin D receptor, were responsible for the observed accumulation of osteoid. Our results confirm the physiological importance of the 24-OHase enzyme for maintaining vitamin D homeostasis, and they reveal that 24,25-dihydroxyvitamin D is a dispensable metabolite during bone development.
ISSN: 0013-7227
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical and Experimental Endocrinology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science