Title: Leptin levels in protracted critical illness: effects of growth hormone-secretagogues and thyrotropin-releasing hormone
Authors: Van den Berghe, Greet ×
Wouters, Pieter
Carlsson, L
Baxter, R C
Bouillon, Roger
Bowers, C Y #
Issue Date: Sep-1998
Series Title: Journal of Clinical Endocrinology and Metabolism vol:83 issue:9 pages:3062-70
Abstract: Prolonged critical illness is characterized by feeding-resistant wasting of protein, whereas reesterification, instead of oxidation of fatty acids, allows fat stores to accrue and associate with a low-activity status of the somatotropic and thyrotropic axis, which seems to be partly of hypothalamic origin. To further unravel this paradoxical metabolic condition, and in search of potential therapeutic strategies, we measured serum concentrations of leptin; studied the relationship with body mass index, insulin, cortisol, thyroid hormones, and somatomedins; and documented the effects of hypothalamic releasing factors, in particular, GH-secretagogues and TRH. Twenty adults, critically ill for several weeks and supported with normocaloric, continuously administered parenteral and/or enteral feeding, were studied for 45 h. They had been randomized to receive one of three combinations of peptide infusions, in random order: TRH (one day) and placebo (other day); TRH + GH-releasing peptide (GHRP)-2 and GHRP-2; TRH + GHRH + GHRP-2 and GHRH + GHRP-2. Peptide infusions were started after a 1-microgram/kg bolus at 0900 h and infused (1 microgram/kg.h) until 0600 h the next morning. Serum concentrations of leptin, insulin, cortisol, T4, T3, insulin-like growth factor (IGF)-I, IGF-binding protein-3 and the acid-labile subunit (ALS) were measured at 0900 h, 2100 h, and 0600 h on each of the 2 study days. Baseline leptin levels (mean +/- SEM: 12.4 +/- 2.1 micrograms/L) were independent of body mass index (25 +/- 1 kg/m2), insulin (18.6 +/- 2.9 microIU/mL), cortisol (504 +/- 43 mmol/L), and thyroid hormones (T4: 63 +/- 5 nmol/L, T3: 0.72 +/- 0.08 nmol/L) but correlated positively with circulating levels of IGF-I [86 +/- 6 micrograms/L, determination coefficient (R2) = 0.25] and ALS (7.2 +/- 0.6 mg/L, R2 = 0.32). Infusion of placebo or TRH had no effect on leptin. In contrast, GH-secretagogues elevated leptin levels within 12 h. Infusion of GHRP-2 alone induced a maximal leptin increase of +87% after 24 h, whereas GHRH + GHRP-2 elevated leptin by up to +157% after 24 h. The increase in leptin within 12 h was related (R2 = 0.58) to the substantial rise in insulin. After 45 h, and having reached a plateau, leptin was related to the increased IGF-I (R2 = 0.37). In conclusion, circulating leptin levels during protracted critical illness were linked to the activity state of the GH/IGF-I axis. Stimulating the GH/IGF-I axis with GH-secretagogues increased leptin levels within 12 h. Because leptin may stimulate oxidation of fatty acids, and because GH, IGF-I, and insulin have a protein-sparing effect, GH-secretagogue administration may be expected to result in increased utilization of fat as preferential substrate and to restore protein content in vital tissues and, consequently, has potential as a strategy to reverse the paradoxical metabolic condition of protracted critical illness.
ISSN: 0021-972X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Intensive Care Medicine
Anesthesiology and Algology
Clinical and Experimental Endocrinology
Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science