ITEM METADATA RECORD
Title: Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus)
Authors: Vereecke, Evie
D'Août, Kristiaan
De Clercq, Dirk
Van Elsacker, Linda
Aerts, Peter #
Issue Date: Apr-2003
Publisher: Wiley-liss
Series Title: American journal of physical anthropology vol:120 issue:4 pages:373-383
Abstract: We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion.
URI: 
ISSN: 0002-9483
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science