Title: Algebraic quantum hypergroups
Authors: Delvaux, L ×
Van Daele, Alphons #
Issue Date: Jan-2011
Publisher: Academic Press
Series Title: Advances in Mathematics vol:226 issue:2 pages:1134-1167
Abstract: An algebraic quantum group is a multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is characterized in terms of these integrals. We construct the dual, just as in the case of algebraic quantum groups and we show that the dual of the dual is the original quantum hypergroup. We define algebraic quantum hypergroups of compact type and discrete type and we show that these types are dual to each other. The algebraic quantum hypergroups of compact type are essentially the algebraic ingredients of the compact quantum hypergroups as introduced and studied (in an operator algebraic context) by Chapovsky and Vainerman.
We will give some basic examples in order to illustrate different aspects of the theory. In a separate note, we will consider more special cases and more complicated examples. In particular, in that note, we will give a general construction procedure and show how known examples of these algebraic quantum hypergroups fit into this framework.
ISSN: 0001-8708
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Analysis Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science