ITEM METADATA RECORD
Title: Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection
Authors: Divin, Andrey ×
Markidis, Stefano
Lapenta, Giovanni
Semenov, V.S.
Erkaev, NV
Biernat, HK #
Issue Date: Dec-2010
Publisher: American Institute of Physics
Series Title: Physics of Plasmas vol:17 issue:12
Article number: 122102
Abstract: A new model of the electron pressure anisotropy in the electron diffusion region in collisionless magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it is possible to derive a simple closure for the off-diagonal electron pressure component. The appearance of these two electron populations near the neutral line is responsible for the anisotropy and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the proposed model, confirming first the presence of two particle populations and second the analytical results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are performed to compare our approach with the model of electron pressure anisotropy in the inner electron diffusion region by Fujimoto and Sydora [Phys. Plasmas 16, 112309 (2009)] .
ISSN: 1070-664X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Plasma-astrophysics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science