ITEM METADATA RECORD
Title: Fast Reactions of Hydroxycarbenes: Tunneling Effect versus Bimolecular Processes
Authors: Kiselev, Vitaly G ×
Swinnen, Saartje
Nguyen, Vinh Son
Gritsan, Nina P
Nguyen, Minh Tho #
Issue Date: May-2010
Publisher: Amer chemical soc
Series Title: Journal of physical chemistry a vol:114 issue:17 pages:5573-5579
Abstract: Different uni- and bimolecular reactions of hydroxymethylene, an important intermediate in the photochemistry of formaldehyde, as well as its halogenated derivatives (XCOH, X = H, F, Cl, Br), have been considered using high-level CCSD(T)/CBS quantum chemical methods. The Wentzel-Kramers-Brillouin (WKB) and Eckart approximations were applied to estimate the tunneling rate constant of isomerization of trans-HCOH to H2CO, and the WKB procedure was found to perform better in this case. In agreement with recent calculations and experimental observations [Schreiner et al., Nature 2008, 453, 906], the half-life of HCOH at the low temperature limit in the absence of bimolecular processes was found to be very long (similar to 2.1 h). The corresponding half-life at room temperature was also noticeable (similar to 35 min). Bimolecular reactions of trans-hydroxymethylene with parent formaldehyde yield primarily more thermodynamically favorable glycolaldehyde via the specific mechanism involving 5-center transition state. The most preferable reaction of cis-hydroxymethylene with formaldehyde yields carbon monoxide and methanol. Due to very low activation barriers, both processes occur with nearly a collision rate. If the concentration of HCOH (and its halogenated analogues XCOH as well) is high enough, the bimolecular reactions of this species with itself become important, and H2CO (or X(H)CO) is then formed with a collision rate. The singlet-triplet energy separation of trans-HCOH is confirmed to be similar to-25 kcal/mol.
ISSN: 1089-5639
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science