Title: Dyonic AdS black holes from magnetohydrodynamics
Authors: Caldarelli, Marco Maria * ×
Dias, Oscar J. C. *
Klemm, Dietmar * #
Issue Date: Mar-2009
Series Title: Journal of High Energy Physics vol:2009 issue:03
Article number: 025
Abstract: We use the AdS/CFT correspondence to argue that large dyonic black holes in anti-de Sitter spacetime are dual to stationary solutions of the equations of relativistic magnetohydrodynamics on the conformal boundary of AdS. The dyonic Kerr-Newman-AdS4 solution corresponds to a charged diamagnetic fluid not subject to any net Lorentz force, due to orthogonal magnetic and electric fields compensating each other. The conserved charges, stress tensor and R-current of the fluid are shown to be in exact agreement with the corresponding quantities of the black hole. Furthermore, we obtain stationary solutions of the Navier-Stokes equations in four dimensions, which yield predictions for (yet to be constructed) charged rotating black strings in AdS5 carrying nonvanishing momentum along the string. Finally, we consider Scherk-Schwarz reduced AdS gravity on a circle. In this theory, large black holes and black strings are dual to lumps of deconfined plasma of the associated CFT. We analyze the effects that a magnetic field introduces in the Rayleigh-Plateau instability of a plasma tube, which is holographically dual to the Gregory-Laflamme instability of a magnetically charged black string.
ISSN: 1029-8479
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Theoretical Physics Section
* (joint) first author
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science