ITEM METADATA RECORD
Title: Modified adenine (9-benzyl-2-butoxy-8-hydroxyadenine) redirects Th2-mediated murine lung inflammation by triggering TLR7
Authors: Vultaggio, Alessandra ×
Nencini, Francesca
Fitch, Paul M
Filì, Lucia
Maggi, Laura
Fanti, Paola
de Vries, Annick
Beccastrini, Enrico
Palandri, Francesca
Manuelli, Cinzia
Bani, Daniele
Giudizi, Maria Grazia
Guarna, Antonio
Annunziato, Francesco
Romagnani, Sergio
Maggi, Enrico
Howie, Sarah E M
Parronchi, Paola #
Issue Date: Jan-2009
Publisher: American Association of Immunologists
Series Title: Journal of Immunology vol:182 issue:2 pages:880-889
Abstract: Substitute adenine (SA)-2, a synthetic heterocycle chemically related to adenine with substitutions in positions 9-, 2-, and 8- (i.e., 9-benzyl-2-butoxy-8-hydroxyadenine), induces in vitro immunodeviation of Th2 cells to a Th0/Th1 phenotype. In this article, we evaluate the in vivo ability of SA-2 to affect Th2-mediated lung inflammation and its safety. TLR triggering and NF-kappaB activation by SA-2 were analyzed on TLR-transfected HEK293 cells and on purified bone marrow dendritic cells. The in vivo effect of SA-2 on experimental airway inflammation was evaluated in both prepriming and prechallenge protocols by analyzing lung inflammation, including tissue eosinophilia and goblet cell hyperplasia, bronchoalveolar lavage fluid cell types, and the functional profile of Ag-specific T cells from draining lymph nodes and spleens. SA-2 induced mRNA expression and production of proinflammatory (IL-6, IL-12, and IL-27) and regulatory (IL-10) cytokines and chemokines (CXCL10) in dendritic cells but down-regulated TGF-beta. Prepriming administration of SA-2 inhibited OVA-specific Abs and Th2-driven lung inflammation, including tissue eosinophilia and goblet cells, with a prevalent Foxp3-independent regulatory mechanism. Prechallenge treatment with SA-2 reduced the lung inflammation through the induction of a prevalent Th1-related mechanism. In this model the activity of SA-2 was route-independent, but adjuvant- and Ag dose-dependent. SA-2-treated mice did not develop any increase of serum antinuclear autoantibodies. In conclusion, critical substitutions in the adenine backbone creates a novel synthetic TLR7 ligand that shows the ability to ameliorate Th2-mediated airway inflammation by a complex mechanism, involving Th1 redirection and cytokine-mediated regulation, which prevents autoreactivity.
URI: 
ISSN: 0022-1767
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science