Title: Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores
Authors: Hartmann, Hanna ×
Eltzschig, Holger K
Wurz, Helena
Hantke, Klaus
Rakin, Alexander
Yazdi, Amir S
Matteoli, Gianluca
Bohn, Erwin
Autenrieth, Ingo B
Karhausen, Jörn
Neumann, Diana
Colgan, Sean P
Kempf, Volkhard A J #
Issue Date: Mar-2008
Publisher: W.B. Saunders
Series Title: Gastroenterology vol:134 issue:3 pages:756-67
Abstract: BACKGROUND & AIMS: Hypoxia inducible factor-1 (HIF-1) is the key transcriptional regulator during adaptation to hypoxia. Recent studies provide evidence for HIF-1 activation during bacterial infections. However, molecular details of how bacteria activate HIF-1 remain unclear. Here, we pursued the role of bacterial siderophores in HIF-1 activation during infection with Enterobacteriaceae. METHODS: In vivo, HIF-1 activation and HIF-1-dependent gene induction in Peyer's patches were analyzed after orogastric infection with Yersinia enterocolitica. The course of an orogastric Y enterocolitica infection was determined using mice with a deletion of HIF-1alpha in the intestine. In vitro, the mechanism of HIF-1 activation was analyzed in infections with Y enterocolitica, Salmonella enterica subsp enterica, and Enterobacter aerogenes. RESULTS: Infection of mice with Y enterocolitica led to functional activation of HIF-1 in Peyer's patches. Because mice with deletion of HIF-1alpha in the intestinal epithelium showed a significantly higher susceptibility to orogastric Y enterocolitica infections, bacterial HIF-1 activation appears to represent a host defense mechanism. Additional studies with Y enterocolitica, S enterica subsp enterica, or E aerogenes, and, moreover, application of their siderophores (yersiniabactin, salmochelin, aerobactin) caused a robust, dose-dependent HIF-1 response in human epithelia and endothelia, independent of cellular hypoxia. HIF-1 activation occurs most likely because of inhibition of prolylhydroxylase activity and is abolished upon infection with siderophore uptake deficient bacteria. CONCLUSIONS: Taken together, this study reveals what we believe to be a previously unrecognized role of bacterial siderophores for hypoxia-independent activation of HIF-1 during infection with human pathogenic bacteria.
ISSN: 0016-5085
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Research in GastroIntestinal Disorders
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science