Title: Robust estimation in very small samples
Authors: Rousseeuw, Peter # ×
Issue Date: 2002
Publisher: North-Holland Pub. Co.
Series Title: Computational Statistics & Data Analysis vol:40 issue:4 pages:741-758
Abstract: In experimental science measurements are typically repeated only a few times, yielding a sample size n of the order of 3 to 8. One then wants to summarize the measurements by a central value and measure their variability, i.e. estimate location and scale. These estimates should preferably be robust against outliers, as reflected by their small-sample breakdown value. The estimator's stylized empirical influence function should be smooth, monotone increasing for location, and decreasing–increasing for scale. It turns out that location can be estimated robustly for n3, whereas for scale n4 is needed. Several well-known robust estimators are studied for small n, yielding some surprising results. For instance, the Hodges–Lehmann estimator equals the average when n=4. Also location M-estimators with auxiliary scale are studied, addressing issues like the difference between one-step and fully iterated M-estimators. Simultaneous M-estimators of location and scale (‘Huber's Proposal 2’) are considered as well, and it turns out that their lack of robustness is already noticeable for such small samples. Recommendations are given as to which estimators to use.
ISSN: 0167-9473
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Statistics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science