Title: A fully robust PARAFAC method for analyzing fluorescence data
Authors: Engelen, Sanne ×
Frosch, Stina
Jorgensen, Bo Munk #
Issue Date: Mar-2009
Publisher: John wiley & sons ltd
Series Title: Journal of chemometrics vol:23 issue:3-4 pages:124-131
Abstract: Parallel factor analysis (PARAFAC) is a widespread method for modeling fluorescence data by means of an alternating least squares procedure. Consequently, the PARAFAC estimates are highly influenced by outlying excitation-emission landscapes (EEM) and element-wise outliers, like for example Raman and Rayleigh scatter. Recently, a robust PARAFAC method that circumvents the harmful effects of outlying samples has been developed. For removing the scatter effects on the final PARAFAC model, different techniques exist. Newly, an automated scatter identification tool has been constructed. However, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method is obtained in that way. The method is assessed by means of simulations and a laboratory-made data set. Copyright (C) 2009 John Wiley & Sons, Ltd.
ISSN: 0886-9383
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Leuven Statistics Research Centre (LStat)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science