Title: Isolation and characterization of two novel scorpion toxins: The alpha-toxin-like CeII8, specific for Na(v)1.7 channels and the classical anti-mammalian CeII9, specific for Na(v)1.4 channels
Authors: Vandendriessche, Thomas
Olamendi-Portugal, Timoteo
Zamudio, Fernando Z
Possani, Lourival D
Tytgat, Jan # ×
Issue Date: Sep-2010
Publisher: Elsevier
Series Title: Toxicon vol:56 issue:4 pages:613-623
Abstract: Scorpion beta-toxins represent a particular pharmacological group of voltage-gated sodium channel (VGSC) neurotoxins. They typically shift the voltage dependence of activation to more hyperpolarizing potentials and reduce the peak current amplitude by binding to receptor-site 4. Here, we report the purification and functional characterization of the first voltage-gated sodium channel toxins, CeII8 and CeII9, isolated from the scorpion Centruroides elegans (Thorell, 1876), which is responsible for deadly cases of intoxication in Mexico. The soluble venom was fractionated by gel filtration and ion-exchange chromatography, followed by reversed-phase HPLC. The toxins CeII8 and CeII9 were further purified and both their amino acid sequence and molecular weight were determined. Both toxins were electrophysiologically characterized on four mammalian VGSCs (rNa(v)1.2, rNa(v)1.4, hNa(v)1.5 and rNa(v)1.7) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage-clamp technique. Although CeII8 has the highest sequence similarity with scorpion alpha-toxins, inhibiting the inactivation of VGSCs, 300 nM toxin had a clear beta-toxin effect and was selective towards Na(v)1.7, involved in short-term and inflammatory pain. To the best of our knowledge, CeII8 is the first beta-toxin active on Na(v)1.7. CeII9, a typical anti-mammalian beta-toxin, selectively modulated Na(v)1.4 at a concentration of 700 nM and was, in contrast to CeII8, found to be lethal to mice. Interestingly, both toxins, despite their differences in amino acid sequence, only altered the biophysical properties of a fraction of the expressed sodium channels. Since these effects have also been reported for the beta-toxin CssIV, the bioactive surfaces of the toxins have been compared to each other.
ISSN: 0041-0101
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Mechatronics, Biostatistics and Sensors (MeBioS)
Toxicology and Pharmacology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science