Title: Identification of residues in glutathione transferase capable of driving functional diversification in evolution - A novel approach to protein redesign
Authors: Ivarsson, Ylva
Mackey, AJ
Edalat, M
Pearson, WA
Mannervik, B # ×
Issue Date: Mar-2003
Publisher: American Society for Biochemistry and Molecular Biology
Series Title: Journal of Biological Chemistry vol:278 issue:10 pages:8733-8738
Abstract: Evolution of protein function can be driven by positive selection of advantageous nonsynonymous codon mutations that arise following gene duplication. By observing the presence and degree of site-specific positive selection for change between divergent paralogs, residue positions responsible for functional changes can be identified. We applied this analysis to genes encoding Mu class glutathione transferases, which differ widely in substrate specificities. Approximately 3% of the amino acid residue positions, both near to and distant from the active site, are under statistically significant positive selection for change. Relevant human glutathione transferase (GST) M1-1 and GST M2-2 codons were mutated. A chemically conservative threonine to serine mutation in GST M2-2 elicited a 1,000-fold increase in specific activity with the GST M1-1-specific substrate trans-stilbene oxide and a 30-fold increase with the alternative epoxide substrates styrene oxide and nitrophenyl glycidol. The reverse mutation in GST M1-1 resulted in reciprocal decreases in activity. Thus, identification of hypervariable codon positions can be a powerful aid in the redesign of protein function, lessening the requirement for extensive mutagenesis or structural knowledge and sometimes suggesting mutations that would otherwise be considered functionally conservative.
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory for Signal Integration in Cell Fate Decision
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science