Title: Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores
Authors: Coe, Benjamin J ×
Foxon, Simon P
Harper, Elizabeth C
Helliwell, Madeleine
Raftery, James
Swanson, Catherine A
Brunschwig, Bruce S
Clays, Koen
Franz, Edith
Garin, Javier
Orduna, Jesus
Horton, Peter N
Hursthouse, Michael B #
Issue Date: Feb-2010
Publisher: Amer chemical soc
Series Title: Journal of the american chemical society vol:132 issue:5 pages:1706-1723
Abstract: In this article, we describe a series of complexes with electron-rich cis-{Ru-II(NH3)(4)}(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127,4845-4859). They have been isolated as their PF6- salts and characterized by using various techniques including H-1 NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru-III/II waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities beta have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d -> pi* metal-to-ligand charge-transfer (MLCT) and pi -> pi* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant beta(0) responses as high as ca. 600 x 10(-30) esu. These pseudo-C-2v chromophores show two substantial components of the beta tensor, beta(zzz) and beta(zyy), although the relative significance of these varies with the physical method applied. According to HRS, beta(zzz) dominates in all cases, whereas the Stark analyses indicate that beta(zyy) is dominant in the shorter chromophores, but beta(zzz) and beta(zyy) are similar for the extended species. In contrast, finite field calculations predict that beta(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand;pi-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880-3891).
ISSN: 0002-7863
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science