This item still needs to be validated !
Title: Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases
Authors: Roskams, Tania ×
Rosenbaum, J
De Vos, Rita
David, Guido
Desmet, Valeer #
Issue Date: Sep-1996
Series Title: Hepatology (Baltimore, Md.) vol:24 issue:3 pages:524-32
Abstract: The mechanism of bile ductular reaction and accompanying fibrogenesis depends on interactions of ductular cells with the matrix and growth factors. Heparan sulfate proteoglycans (HSPGs) are essential cofactors in cell-matrix adhesion processes, in cell-cell recognition systems, and in receptor-growth factor interactions. We used monoclonal antibodies specific for the cell surface HSPGs (syndecans, glypican), for matrix HSPG (perlecan), and for heparan sulfate carbohydrate (HS) to investigate their immunohistochemical expression in 20 specimens with chronic cholestatic liver disease and in five normal human liver specimens. Because activated hepatic stellate cells (HSC are a major source of fibrosis in the liver, we also examined HSPG expression in primary cultures of human activated HSC using immunocytochemistry and Western blotting and for syndecan-1 also Northern blotting. In comparison with bile ductular cells of normal liver, reactive ductules in chronic cholestasis were marked by an elevated expression of syndecan-1, surrounded by an increased perlecan expression. In acinar zone 1, large stimulated macrophages and HSC, present in increased numbers, were strongly positive for syndecan-3. Cultured HSC showed a membranous staining pattern for syndecan-1, syndecan-3, and heparan sulfate, and in addition intracellular staining for syndecan-2, -3, and 4. Perlecan immunoreactivity was detected as intercellular strings. Western blotting revealed positive bands with all antibodies and Northern blotting for syndecan-1 was also positive. These results show that cultured human HSC can synthesize all four syndecans, glypican, and perlecan. These data reveal changes in the expression of syndecan-1, syndecan-3, and perlecan in human chronic cholestatic liver disease, that may be important in the deposition of matrix components and activation of growth factors that support ductular reaction and accompanying fibrogenesis.
ISSN: 0270-9139
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Cell & Tissue Research
Molecular Genetics Section (-)
Department of Human Genetics - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science