Title: Impaired development of hippocampal mossy fibre synapses in mouse mutants for the presynaptic scaffold protein Bassoon
Authors: Lanore, Frederic ×
Blanchet, Christophe
Fejtova, Anna
Pinheiro, Paulo
Richter, Karin
Balschun, Detlef
Gundelfinger, Eckart
Mulle, Christophe #
Issue Date: Jun-2010
Publisher: Wiley-blackwell publishing, inc
Series Title: Journal of physiology-london vol:588 issue:12 pages:2133-2145
Abstract: Bassoon, a protein highly concentrated at the synaptic active zone, is thought to participate in the organization of the cytomatrix at the site of neurotransmitter release. Bassoon is amongst the first proteins to accumulate at newly formed synaptic junctions, raising the question of the functional role of this protein in the early stages of synaptic development. Here we show that the course of synaptic maturation of hippocampal mossy fibre (MF) synapses (glutamatergic synapses with multiple release sites) is markedly altered during the first 2 weeks of postnatal development in mutant mice lacking the central region of Bassoon (Bsn-/- mice). At postnatal day 7 (P7), Bsn-/- mice display large amplitude MF-EPSCs with decreased paired pulse ratios, an abnormality which may be linked to deficits in the organization of the presynaptic active zone. Surprisingly, 1 week later, decreased MF-EPSCs amplitude is observed in Bsn-/- mice, consistent with the inactivation of a subset of synaptic release sites. Finally, at more mature states a decreased posttetanic potentiation is observed at MF-synapses. These results support the notion that Bassoon is important for organizing the presynaptic active zone during the postnatal maturation of glutamatergic synapses.
ISSN: 0022-3751
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory for Biological Psychology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science