This item still needs to be validated !
ITEM METADATA RECORD
Title: Influence of microbial bile salt desulfation upon the fecal excretion of bile salts in gnotobiotic rats
Authors: Eyssen, Hendrik ×
Van Eldere, Johan
Parmentier, Guido
Huijghebaert, S
Mertens, Jozef #
Issue Date: Apr-1985
Series Title: Journal of steroid biochemistry vol:22 issue:4 pages:547-54
Abstract: The fecal excretion of intraperitoneally injected 24-14C-labeled taurocholate (TCA), taurolithocholate (TLCA) and the respective 3-sulfate esters (TCA-3-S; TLCA-3-S), were compared in germfree (GF) rats, conventional (CV) rats, and in gnotobiotic rats associated with Clostridium Cl-8 or this same strain Cl-8 plus the bile desulfating Clostridium S1, respectively. TCA and TLCA were about two times more rapidly excreted by CV animals than by GF animals; the time required for 50% excretion of total label injected (t 1/2) was 6.6 days vs 14.9 for TCA, and 4.4 vs 8.9 for TLCA. In GF and in CV animals, TCA-3-S and TLCA-3-S were excreted more rapidly than their nonsulfated analogues; the t 1/2 values of TCA-3-S and TCA were 2.7 days vs 14.9 in GF rats, and 3.1 vs 6.6 days in CV animals. The t 1/2 values of TLCA-3-S and TLCA were 2.7 days vs 8.9 in GF rats, and 1.5 vs 4.4 days in CV rats. In gnotobiotic rats associated with Clostridium strains S1 + Cl-8, fecal bile salts were nearly 100% deconjugated and desulfated and the 50% excretion times of TCA-3-S and TLCA-3-S approximated to those of TCA and TLCA in GF animals. T 1/2 of TCA-3-S in gnotobiotic S1 + Cl-8 animals was 12.2 days vs 14.9 for TCA in GF animals. In gnotobiotic S1 + Cl-8 animals the t 1/2 of TLCA and TLCA-3-S was 12.5 and 11.0 days, respectively. These results illustrate clearly the important effect the intestinal microflora has upon the metabolic half-life of bile salts. Moreover, they demonstrate that desulfation of bile salts by the intestinal microflora takes place in intestinal segments from where a certain degree of reabsorption is still possible, and thus point to the fact that microbial desulfation is an important variable in the overall elimination of bile salts.
ISSN: 0022-4731
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory for Experimental and Clinical Microbiology (-)
Laboratory of Clinical Bacteriology and Mycology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science