Title: Three-dimensional atomic-scale structure of size-selected gold nanoclusters
Authors: Li, Z. Y ×
Young, N. P
Di Vece, Marcel
Palomba, S
Palmer, R. E
Bleloch, A. L
Curley, B. C
Johnston, R. L
Jiang, J
Yuan, J #
Issue Date: Jan-2008
Publisher: Nature publishing group
Series Title: Nature vol:451 issue:7174 pages:46-48
Article number: U2
Abstract: An unambiguous determination of the three-dimensional structure of nanoparticles is challenging(1). Electron tomography requires a series of images taken for many different specimen orientations(2). This approach is ideal for stable and stationary structures(3). But ultrasmall nanoparticles are intrinsically structurally unstable and may interact with the incident electron beam(4-6), constraining the electron beam density that can be used and the duration of the observation. Here we use aberration-corrected scanning transmission electron microscopy(7), coupled with simple imaging simulation, to determine with atomic resolution the size, three- dimensional shape, orientation and atomic arrangement of size- selected gold nanoclusters that are preformed in the gas phase and soft- landed on an amorphous carbon substrate. The structures of gold nanoclusters containing 309 +/- 6 atoms can be identified with either Ino- decahedral, cuboctahedral or icosahedral geometries. Comparison with theoretical modelling of the system suggests that the structures are consistent with energetic considerations. The discovery that nanoscale gold particles function as active and selective catalysts for a variety of important chemical reactions has provoked much research interest in recent years(8-12). We believe that the detailed structure information we provide will help to unravel the role of these nanoclusters in size- and structure-specific catalytic reactions(11,12). We note that the technique will be of use in investigations of other supported ultrasmall metal cluster systems.
ISSN: 0028-0836
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Solid State Physics and Magnetism Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science