ITEM METADATA RECORD
Title: Context and Technology Bound Motives for the Use of Electricity in Industrial Thermal Processing. From 'Electroheat' to 'Electromagnetic Processing of Materials' (Context- en technologiegebonden motieven voor het gebruik van elektriciteit in industriële thermische processen. Van 'Elektrowarmte' tot 'Elektromagnetische Materiaalbehandeling')
Other Titles: Context and Technology Bound Motives for the Use of Electricity in Industrial Thermal Processing. From 'Electroheat' to 'Electromagnetic Processing of Materials'
Authors: Van Reusel, Koenraad
Issue Date: 20-Oct-2010
Table of Contents: PREFACE i
SAMENVATTING iii
ABSTRACT v
TABLE OF CONTENTS vii
1. Introduction 1
1.1. Purpose of research 1
1.2. Concept of research – means and method 1
1.3. A two-fold research question as a basis for the intended purpose of the investigation 2
1.4. Structure 2
2. “Electroheat” publications 5
2.1 Introduction 5
2.2. Monographs on “Electroheat” 5
2.2.1. PIETERMAAT F. P., Elektrotechniek Deel III, 1958 9
2.2.2. PASCHKIS M.E., Industrial Electric Furnaces and Appliances, 1960 11
2.2.3. PIRANI M. (Hrsg.), Elektrothermie, 1960 14
2.2.4. KEGEL K., Elektrowärme. Theorie und Praxis, 1974 16
2.2.5. DAVIES J., Induction Heating Handbook, 1979 20
2.2.6. ORFEUIL M., Electrothermie industrielle, 1981 21
2.2.7. KEGEL K., Elektrowärme. Aufgaben aus der Praxis, 1983 24
2.2.8. METAXAS A.C., Industrial Microwave Heating, 1983 25
2.2.9. ORFEUIL M., Electric Process Heating, 1987 28
2.2.10. LANGMAN, R.D., Worked examples in electroheat, 1987 29
2.2.11. ZINN S., Elements of Induction Heating, 1988 30
2.2.12. ELECTRA (France), Enseignement de l’électrothermie, 1988 32
2.2.13. ELECTRA (France), Les fours industriels à résistances électriques, 1989 35
2.2.14. Davies E.J., Conduction and Induction Heating, 1990 36
2.2.15. ELECTRA (France), Exercises d’Electrothermie, 1991 37
2.2.16. ELECTRA (France), Les Plasmas dans l’industrie, 1991 39
2.2.17. ERICKSON C. J., Handbook of Electrical Heating for Industry, 1994 40
2.2.18. ROUSSY G., Foundations and Industrial Applications of Microwaves and Radio Frequency Fields, 1995 41
2.2.19. ELECTRA (France), Induction Conduction électrique dans l’industrie, 1996 43
2.2.20. METAXAS A.C., Foundations of Electroheat, 1996 44
2.2.21. HEINEN K.H., Elektrostahl-Erzeugung, 1997 46
2.2.22. MEREDITH R., Engineers’ Handbook of Industrial Microwave Heating, 1998 48
2.2.23. KRAMER C. Praxishandbuch Thermoprozess-Technik, 2003 49
2.2.24. RUDNEV V., Handbook of Induction Heating, 2003 51
2.3. General assessment of the explored “Electroheat” publications 52
2.3.1. Juxtaposition of electricity and heat theory 56
2.3.2. Spin-off of main stream technology 56
2.3.3. No historical shift in context bound motives 56
2.3.4. Bidisciplinary field of study 57
2.4. The need for a new “Electroheat” publication 57
2.4.1. The need for organizing knowledge into a theory 58
2.4.2. The need for a clear definition 58
2.4.3. The need for prompt industrial relevance 59
2.4.4. The need for a more appropriate denomination 59
2.4.5. Conclusion 60
3. LABORELEC: a representative electroheat facility 61
3.1. Introduction 61
3.2. The LABORELEC case as representative for other facilities in the world 61
3.3. LABORELEC as a fully fledged electroheat laboratory 62
3.4. Motives for making an appeal to an electroheat laboratory 63
3.4.1. Reduction of energy cost 64
3.4.3. Improvement of product quality 64
3.4.4. Improvement of process 65
3.4.5. Motives of socio-economical acceptance 66
3.5. Motives for resistance heating 67
3.5.1. Resistance heating in the whole range of electroheat technologies 67
3.5.2. Technology and context bound motives for resistance heating 68
3.5.3. Motives for resistance heating during the years 73
3.6. Motives for infrared heating 74
3.6.1. Infrared heating in the whole range of electroheat technologies 74
3.6.2. Technology and context bound motives for infrared heating 74
3.6.3. Motives for infrared heating during the years 80
3.7. Motives for induction heating 81
3.7.1. Induction heating in het whole range of electroheat technologies 81
3.7.2. Technology and context bound motives for induction heating 81
3.7.3. Motives for induction heating during the years 86
3.8. Motives for Dielectric heating 87
3.8.1. Dielectric heating in the whole range of electroheat technologies 87
3.8.2. Technology and context bound motives for dielectric heating 88
3.8.3. The motives for dielectric heating over the years 93
3.9. Motives for electroheat – compared by technique 95
3.10. Conclusions 99
3.10.1. A multitude of motives 99
3.10.2. Context bound reasons for the success of the electroheat laboratory 99
3.10.3. Technology bound reasons for moving the electroheat equipment to universities 100
3.10.4. Electroheat technologies in the 21st century 101
3.10.5. The opportunity of an electroheat facility in the 21st century 105
4. UIE – “Union Internationale d’Electrothermie” 107
4.1. Introduction 107
4.2. The origins of UIE 108
4.2.1. Prof. dr. ir. Henri Gelissen (1895-1982) 108
4.2.2. National Committees for Electroheat 110
4.2.3. The founding of UIE 116
4.2.4. Conclusion: electroheat penetration as a well planned policy 121
4.3. The UIE conferences 122
4.4. Conclusion and future role of UIE 130
4.4.1. Electroheat fitting into the market policy of electricity companies 130
4.4.2. UIE as facilitator in the shift from Electroheat to Electromagnetic Processing of Materials 131
5. Manufacturers of electroheat equipment 133
5.1. Introduction 133
5.2. Resistance heating 134
5.2.1. Some introductory and general remarks 134
5.2.2. Claimed benefits of resistance heating 135
5.2.3. Issue of energy substitution 136
5.2.4. Issue of technology substitution 137
5.2.5. Parameters used to describe the performance 138
5.3. Infrared heating 141
5.3.1. Some introductory and general remarks 141
5.3.2. Claimed benefits of infrared heating 141
5.3.3. Issue of energy substitution 142
5.3.4. Issue of technology substitution 144
5.3.5. Parameters used to describe the performance 145
5.4. Induction heating 146
5.4.1. Some introductory and general remarks 146
5.4.2. Claimed benefits of induction heating 146
5.4.3. Issue of energy substitution 147
5.4.4. Issue of technology substitution 148
5.4.5. Parameters used to describe the performance 148
5.5. Dielectric heating 149
5.5.1. Some introductory and general remarks 149
5.5.2. Claimed benefits of dielectric heating 150
5.5.3. Issue of energy substitution 151
5.5.4. Issue of technology substitution 151
5.5.5. Parameters used to describe the performance 157
5.6. Conclusions 157
5.6.1. Manufacturers use the “electroheat format” 157
5.6.2. Manufacturers elevate electricity beyond mere energy 157
5.6.3. Electroheat equipment manufacturing is application driven 158
5.6.4. Electroheat equipment manufacturers have a crucial role to play 158
6. Electroheat in industrial processing 161
6.1. Electroheat from industrial perspective 161
6.2. Best Reference Documents as information source 162
6.3. Spotting electroheat applications in the relevant BREF documents 162
6.3.1 Cement, Lime and Magnesium Oxide Manufacturing Industries 164
6.3.2. Ceramic Manufacturing Industry 164
6.3.3. Chlor-Alkali Manufacturing Industry 167
6.3.4. Common Waste Water and Waste Gas Treatment / Management Systems in the Chemical Sector 168
6.3.5. Energy Efficiency 169
6.3.6. Ferrous Metals Processing Industry 170
6.3.7 Food, Drink and Milk Industries 177
6.3.8. Glas Manufacturing 181
6.3.9. Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilizers Industries 184
6.3.10. Large Volume Inorganic Chemicals – Solids and Others Industry 185
6.3.11. Large Volume Organic Chemical Industry 186
6.3.12. Management of Tailings and Waste-Rock in Mining Activities 187
6.3.13. Manufacture of Organic Fine Chemicals 187
6.3.14. Non-Ferrrous Metals Industries 189
6.3.15. Production of Iron and Steel 194
6.3.16. Production of Polymers 195
6.3.17. Production of Speciality Inorganic Chemicals 196
6.3.18. Pulp and Paper Industry 197
6.3.19. Smitheries and Foundries Industy 198
6.3.20. Surface Treatment of Metals and Plastics 202
6.3.21. Surface Treatment Using Organic Solvents 204
6.3.22. Tanning of Hides and Skins 206
6.3.23. Textiles Industry 207
6.3.24. Waste Incineration 208
6.3.25. Waste Treatments Industries 209
6.4. Lesson learned from the scrutiny of the BREF documents 210
7. General conclusions and perspectives – From “Electroheat” to “Electromagnetic Processing of Materials” 213
7.1. A reinterpretation of previous conclusions from the double viewpoint of context and technology bound motives 213
7.2. Electromagnetic Processing of Materials 218
7.2.1. Marcel Garnier and Shigeo Asai 218
7.2.2. EPM conferences 219
7.2.3. The Electromagnetic Processing of Materials’ tree of knowledge 219
7.3. A necessary decomposition as a prerequisite for recoining the electroheat field of study 221
7.3.1. Move of the “Indirect resistance heating” subject to the “Heat transfer” field of study 221
7.3.2. “Wavelength” as the structuring principle of the “Electromagnetic Processing of Materials” field of study 221
7.3.3. The thermodynamic approach has to be reconsidered 223
7.4. Benefits of a clear identity 225
7.4.1. Funding and project partnerships 225
7.4.2. Integration in academic curricula 225
7.5. Further research 225
7.5.1. Building of the EPM field of study 225
7.5.2. Industrial implementation of drives and lighting 226
7.6. Final statement 226
BIBLIOGRAPHY 227
LIST OF PUBLICATIONS 231
ISBN: 978-94-6018-260-0
Publication status: published
KU Leuven publication type: TH
Appears in Collections:ESAT - ELECTA, Electrical Energy Computer Architectures
Campus Library Arenberg

Files in This Item:
File Status SizeFormat
PhD text Koen Van Reusel _22 september_.pdf Published 1519KbAdobe PDFView/Open

These files are only available to some KU Leuven staff members

 


All items in Lirias are protected by copyright, with all rights reserved.