Title: Robust forecasting with exponential and Holt-Winters smoothing
Authors: Gelper, Sarah ×
Fried, R.
Croux, Christophe #
Issue Date: Apr-2010
Publisher: Wiley
Series Title: Journal of Forecasting vol:29 issue:3 pages:285-300
Abstract: Robust versions of the exponential and Holt–Winters smoothing method for forecasting are presented. They are suitable for forecasting univariate time series in the presence of outliers. The robust exponential and Holt–Winters smoothing methods are presented as recursive updating schemes that apply the standard technique to pre-cleaned data. Both the update equation and the selection of the smoothing parameters are robustified. A simulation study compares the robust and classical forecasts. The presented method is found to have good forecast performance for time series with and without outliers, as well as for fat-tailed time series and under model misspecification. The method is illustrated using real data incorporating trend and seasonal effects.
ISSN: 0277-6693
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Operations Research and Business Statistics (ORSTAT), Leuven
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
robustforecasting.pdf Published 281KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science