ITEM METADATA RECORD
Title: Order selection tests with multiply-imputed data
Authors: Consentino, Fabrizio ×
Claeskens, Gerda #
Issue Date: Oct-2010
Publisher: North-Holland Pub. Co.
Series Title: Computational Statistics & Data Analysis vol:54 issue:10 pages:2284-2295
Abstract: Nonparametric tests for the null hypothesis that a function has a prescribed form are developed and applied to data sets with missing observations. Omnibus nonparametric tests such as the order selection tests, do not need to specify a particular alternative parametric form, and have power against a large range of alternatives. More specifically, likelihood-based order selection tests are defined that can be used for multiply imputed data when the data are missing-at-random. A simulation study and data analysis illustrate the performance of the tests. In addition, an Akaike information criterion for model selection is presented that can be used with multiply imputed datasets.
ISSN: 0167-9473
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Operations Research and Business Statistics (ORSTAT), Leuven
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
orderselection.pdf Published 512KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science