Title: Age-associated decline in human femoral neck cortical and trabecular content of insulin-like growth factor I: potential implications for age-related (type II) osteoporotic fracture occurrence
Authors: Boonen, Steven ×
Aerssens, J
Dequeker, Jan
Nicholson, P
Cheng, X
Lowet, G
Verbeke, Geert
Bouillon, Roger #
Issue Date: Sep-1997
Series Title: Calcified tissue international vol:61 issue:3 pages:173-8
Abstract: Recent evidence suggests that regulatory peptides such as insulin-like growth factor-I (IGF-I) are released locally from bone during resorption, and may then act in a sequential manner to regulate the cellular events required for the coupling of bone formation to resorption. Among other factors, a decrease in bone-associated IGF-I levels could therefore result in remodeling imbalance and contribute to the gradual loss of bone that occurs with age. As the femoral neck region is of primary concern for the clinical manifestations of osteoporosis, the current study was intended to assess the IGF-I contents in femoral neck cortical and trabecular bone from aging individuals. Bone samples from the neck region were obtained at postmortem from 39 females and 35 males, aged 23-92 years. Concentrations of IGF-I and osteocalcin were measured by radioimmunoassay in the supernatants obtained after EDTA and guanidine hydrochloride extraction. The total amount of protein present in the extracts was determined by spectrophotometry. IGF-I levels were significantly lower in trabecular compared with cortical bone. Though femoral neck total protein did not vary with donor age, both IGF-I and osteocalcin were found to decline markedly. Between the ages of 23 and 92 years, average yearly rates of loss of 0.30 and 0.21 ng IGF-I/mg protein were observed in cortical and trabecular bone, respectively, corresponding with net losses of nearly 35% of the cortical skeletal content of IGF-I and 41% of the trabecular skeletal content of IGF-I. These changes in bone-associated IGF-I paralleled those of osteocalcin, consistent with an overall decrease in osteoblast function with aging. In women, the rate of decline was significantly faster for trabecular than for cortical IGF-I, however in men, age-dependent changes in cortical and trabecular IGF-I were similar. These findings support the hypothesis that changes in the local IGF regulatory system over time could be a pathophysiologic component of the age-related (type II) femoral neck osteoporotic syndrome.
ISSN: 0171-967X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Gerontology and Geriatrics
Faculty of Medicine - miscellaneous
Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat)
Clinical and Experimental Endocrinology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science