Title: Particle-based model to simulate the micromechanics of biological cells
Authors: Van Liedekerke, Paul ×
Ghysels, Pieter
Samaey, Giovanni
Tijskens, Engelbert
Roose, Dirk
Ramon, Herman #
Issue Date: 2010
Publisher: Published by the American Physical Society through the American Institute of Physics
Series Title: Physical Review E, Statistical, Nonlinear and Soft Matter Physics vol:81 issue:1
Article number: 061906
Abstract: This paper is concerned with addressing how biological cells react to mechanical impulse. We propose a particle based model to numerically study the mechanical response of these cells with subcellular detail. The model focusses on a plant cell in which two important features are present: (1) the cell's interior liquid-like phase inducing hydrodynamic phenomena, and (2) the cell wall, a viscoelastic solid membrane that encloses the protoplast. In this particle modeling framework, the cell fluid is modeled by a standard Smoothed Particle Hydrodynamics (SPH) technique. For the viscoelastic solid phase (cell wall), a Discrete Element Method (DEM) is proposed. The cell wall hydraulic conductivity (permeability) is built in through a constitutive relation in the SPH formulation. Simulations show that the SPH-DEM model is in reasonable agreement with compression experiments on an \textit{in vitro} cell and with analytical models for the basic dynamical modes of a spherical liquid filled shell. We have performed simulations to explore more complex situations such as relaxation and impact, thereby considering two cell types: a stiff plant type and a soft animal-like type. Their particular behavior (force transmission) as a function of protoplasm and cell wall viscosity is discussed. We also show that the mechanics during and after cell failure can be modeled adequately. This methodology has large flexibility and opens possibilities to quantify problems dealing with the response of biological cells to mechanical impulses, e.g. impact, and the prediction of damage on a (sub)cellular scale.
ISSN: 1539-3755
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Mechatronics, Biostatistics and Sensors (MeBioS)
Numerical Analysis and Applied Mathematics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science