Title: Simulation Techniques For Mid-Frequency Vibro-Acoustics Virtual Tools for Real Problems
Authors: Desmet, Wim ×
Pluymers, Bert
Atak, Onur
Bergen, Bart
Deckers, Elke
Huijssen, Jacobus
Van Genechten, Bert
Vergote, Karel
Vandepitte, Dirk #
Issue Date: 12-Apr-2010
Conference: 2010 Spring Conference of KSNVE edition:20 location:Jeju Island, Korea date:12-14 May 2010
Abstract: The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the finite element and boundary element method. Due to the huge computational efforts involved, the
use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational efforts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid.
In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational effciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Trefftz approach is being developed at the K.U.Leuven - Noise and Vibration Research group.
This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short
overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based
technique and its hybrid coupling with finite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its beneficial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Production Engineering, Machine Design and Automation (PMA) Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
KeynoteDesmet.pdfMain article Accepted 6858KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.