Title: Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers
Authors: Mueller, Kerstin
Vanderborght, Jan ×
Englert, Andreas
Kemna, Andreas
Huisman, Johan A
Rings, Joerg
Vereecken, Harry #
Issue Date: Mar-2010
Publisher: Amer geophysical union
Series Title: Water resources research vol:46 issue:W03502 pages:1-23
Abstract: The relevance of aquifer heterogeneity for flow and transport is recognized broadly; however, its characterization is hampered by the inaccessibility of the subsurface. Time-lapse electrical resistivity tomography (ERT) offers the possibility of imaging noninvasively subsurface transport. We present results of two tracer tests that were carried out successively in a shallow aquifer at the Krauthausen test site ( Germany). The breakthroughs of an electrically conductive and a resistive tracer were monitored with ERT and local multilevel groundwater samplers (MLS) along two cross sections perpendicular to the mean flow direction. Sinking of the conductive salt tracer due to density effects was observed with ERT. We applied a stream tube model to characterize the spatially variable transport. ERT-derived stream tube parameters showed similar patterns for the two tracer experiments, reflecting the effect of aquifer heterogeneity on transport. MLS data did not show similar spatial patterns, which indicates that these measurements may be prone to subtle changes of the flow field in the small sampling volume and mixing within screened wells. Between 50% and 10% of the tracer was recovered in the ERT-derived breakthrough curves. Compared with transport simulations in a homogeneous aquifer, ERT-derived time-integrated changes in electrical conductivity were locally larger but focused in a smaller area. MLS data indicated that in this area, ERT did not underestimate the tracer recovery. The relatively low tracer recovery was attributed to undetected tracer breakthrough in regions with low ERT sensitivity and in regions where the length of the tracer plume and the electrical conductivity contrast were small.
ISSN: 0043-1397
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division Soil and Water Management
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science