ITEM METADATA RECORD
Title: Control of roll and pitch motion during multi-directional balance perturbations
Authors: Küng, Ursula Margareta ×
Horlings, C G C
Honegger, F
Duysens, Jaak
Allum, J H J #
Issue Date: Apr-2009
Publisher: Springer-Verlag
Series Title: Experimental Brain Research vol:194 issue:4 pages:631-45
Abstract: Does the central nervous system (CNS) independently control roll and pitch movements of the human body during balance corrections? To help provide an answer to this question, we perturbed the balance of 16 young healthy subjects using multi-directional rotations of the support surface. All rotations had pitch and roll components, for which either the roll (DR) or the pitch (DP) component were delayed by 150 ms or not at all (ND). The outcome measures were the biomechanical responses of the body and surface EMG activity of several muscles. Across all perturbation directions, DR caused equally delayed shifts (150 ms) in peak lateral centre of mass (COM) velocity. Across directions, DP did not cause equally delayed shifts in anterior-posterior COM velocity. After 300 ms however, the vector direction of COM velocity was similar to the ND directions. Trunk, arm and knee joint rotations followed this roll compared to pitch pattern, but were different from ND rotation synergies after 300 ms, suggesting an intersegmental compensation for the delay effects. Balance correcting responses of muscles demonstrated both roll and pitch directed components regardless of axial alignment. We categorised muscles into three groups: pitch oriented, roll oriented and mixed based on their responses to DR and DP. Lower leg muscles were pitch oriented, trunk muscles were roll oriented, and knee and arm muscles were mixed. The results of this study suggest that roll, but not pitch components, of balance correcting movement strategies and muscle synergies are separately programmed by the CNS. Reliance on differentially activated arm and knee muscles to correct roll perturbations reveals a dependence of the pitch response on that of roll, possibly due to biomechanical constraints, and accounts for the failure of DP to be transmitted equally in time across all limbs segments. Thus it appears the CNS preferentially programs the roll response of the body and then adjusts the pitch response accordingly.
URI: 
ISSN: 0014-4819
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Movement Control & Neuroplasticity Research Group
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science