ITEM METADATA RECORD
Title: Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts
Authors: Stickler, P *
De Visscher, Geofrey *
Mesure, Lindsay
Famaey, Nele
Martin, D
Campbell, J H
Van Oosterwyck, Hans
Meuris, Bart
Flameng, Willem # ×
Issue Date: Jul-2010
Publisher: Elsevier
Series Title: Acta Biomaterialia vol:6 issue:7 pages:2448-2456
Abstract: Tissue-engineered vascular grafts must have qualities that rival native vasculature, specifically the ability to remodel, the expression of functional endothelial components and a dynamic and functional extracellular matrix (ECM) that resists the forces of the arterial circulation. We have developed a device that when inserted into the peritoneal cavity, attracts cells around a tubular scaffold to generate autologous arterial grafts. The device is capable of cyclically stretching (by means of a pulsatile pump) developing tissue to increase the mechanical strength of the graft. Pulsed (n=8) and unpulsed (n=8) devices were implanted for 10days in lovenaar sheep (n=8). Pulsation occurred for a period of 5-8days before harvest. Thick unadhered autologous tissue with cells residing in a collagen ECM was produced in all devices. Collagen organization was greater in the circumferential direction of pulsed tissue. Immunohistochemical labelling revealed the hematopoietic origin of >90% cells and a significantly higher coexpression with vimentin in pulsed tissue. F-actin expression, mechanical failure strength and strain were also significantly increased by pulsation. Moreover, tissue could be grafted as carotid artery patches. This paper shows that unadhered tissue tubes with increased mechanical strength and differentiation in response to pulsation can be produced with every implant after a period of 10days. However, these tissue tubes require a more fine-tuned exposure to pulsation to be suitable for use as vascular grafts.
URI: 
ISSN: 1742-7061
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biomechanics Section
Experimental Cardiac Surgery
Clinical Cardiac Surgery
* (joint) first author
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science