Title: Mortar and paste rheology: concentration, polydispersity and air entrapment at high solid fraction
Authors: Hendrickx, Roel ×
Rezeau, Martin
Van Balen, Koenraad
Van Gemert, Dionys #
Issue Date: 2009
Series Title: Applied Rheology vol:19 issue:5
Article number: 52550
Abstract: Rheological characterisation of mortar is complicated by phenomena of slip, the formation of shear bands and depletion. At relatively low solid fractions a typical Couette geometry and a medium-size mixer-type rheometer were used to determine flow curves. At higher solid fractions a large-size coaxial cylinder rheometer with multiple blade vane geometry was used up to the point where slippage occurred. The viscosity as a function of concentration responds to the Krieger-Dougherty law, when a mortar is considered as a suspension of sand in a matrix of binder slurry. The limits of this description corresponds to a critical solid fraction above which air is entrapped during the mixing procedure: air content measurements demonstrate this phenomenon. A clear relationship between mortar and slurries was established, based on the measured properties of both binder and sand particles, and on the Farris model for polydisperse suspensions. Intrinsic viscosity can be used as a tool to evaluate shape characteristics of the binder particles. A procedure for mixture optimisation of mortars using this model is demonstrated for the case of a trimodal mortar.
ISSN: 1430-6395
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Building Physics Section
Building Materials and Building Technology Section
Department of Civil Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
AR_19_52550.pdfabstract + article (low quality graphics) Published 300KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science