ITEM METADATA RECORD
Title: Identification and subcellular localization of a new cystinosin isoform
Authors: Taranta, Anna ×
Petrini, Stefania
Palma, Alessia
Mannucci, Liliana
Wilmer, Martijn J
De Luca, Veronica
Diomedi-Camassei, Francesca
Corallini, Serena
Bellomo, Francesco
van den Heuvel, Lambertus
Levtchenko, Elena
Emma, Francesco #
Issue Date: May-2008
Publisher: American Physiological Society
Series Title: American Journal of Physiology. Renal, Fluid and Electrolyte Physiology vol:294 issue:5 pages:F1101-F1108
Abstract: Nephropathic cystinosis is a lysosomal disorder caused by functional defects of cystinosin, which mediates cystine efflux into the cytosol. The protein sequence contains at least two signals that target the protein to the lysosomal compartment, one of which is located at the carboxy terminal tail (GYDQL). We have isolated from a human kidney cDNA library a cystinosin isoform, which is generated by an alternative splicing of exon 12 that removes the GYDQL motif. Based on its last three amino acids, we have termed this protein cystinosin-LKG. Contrary to the lysosomal cystinosin isoform, expression experiments performed by transient transfection of green fluorescent protein fusion plasmids in HK2 cells showed that cystinosin-LKG is expressed in the plasma membrane, in lysosomes, and in other cytosolic structures. This subcellular localization of the protein was confirmed by transmission electron microscopy. In addition, immunogold labeling was observed in the endoplasmic reticulum and in the Golgi apparatus. Expression of the protein in renal tubular structures was also directly demonstrated by immunostaining of normal human kidney sections. The plasma membrane localization of cystinosin-LKG was directly tested by [(35)S]cystine flux experiments in COS-1 cells. In the presence of a proton gradient, a marked enhancement of intracellular cystine transport was observed in cells overexpressing this isoform. These data indicate that the expression of the gene products encoded by the CTNS gene is not restricted to the lysosomal compartment. These finding may help elucidate the mechanisms of cell dysfunction in this disorder.
URI: 
ISSN: 0363-6127
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science