Title: A predictor-corrector type algorithm for the pseudospectral abscissa computation of time-delay systems
Authors: Gumussoy, Suat ×
Michiels, Wim #
Issue Date: Apr-2010
Publisher: Pergamon Press
Series Title: Automatica vol:46 issue:4 pages:657-664
Abstract: The pseudospectrum of a linear time-invariant system is the set in the complex plane consisting of all the roots of the characteristic equation when the system matrices are subjected to all possible perturbations with a given upper bound. The pseudospectral abscissa is defined as the maximum real part of the characteristic roots in the pseudospectrum and, therefore, it is for instance important from a robust stability point of view. In this paper we present an accurate method for the computation of the pseudospectral abscissa of retarded delay differential equations with discrete pointwise delays.

Our approach is based on the connections between the pseudospectrum and the level sets of an appropriately defined complex function. The computation is done in two steps. In the prediction step, an approximation of the pseudospectrum is obtained based on a rational approximation of the characteristic matrix and the application of a bisection algorithm. Each step in this bisection algorithm relies on checking the presence of the imaginary axis eigenvalues of a complex matrix, similar to the delay free case. In the corrector step, the approximate pseudospectral abscissa is corrected to any given accuracy, by solving a set of nonlinear equations that characterize extreme points in the pseudospectrum contours.
ISSN: 0005-1098
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Numerical Analysis and Applied Mathematics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science