Title: Characterizing and computing the ℋ₂ norm of time-delay systems by solving the delay Lyapunov equation
Authors: Jarlebring, Elias
Vanbiervliet, Joris
Michiels, Wim
Issue Date: Dec-2009
Publisher: Department of Computer Science, K.U.Leuven
Series Title: TW Reports vol:TW553
Abstract: It is widely known that the solutions of Lyapunov equations can be used to compute the H2 norm of linear time-invariant (LTI) dynamical systems. In this paper, we show how this theory extends to dynamical systems with delays. The first result is that the two-norm can be computed from the solution of a generalization of the Lyapunov equation, which is known as the delay Lyapunov equation. From the relation with the delay Lyapunov equation we can prove an explicit formula for the H² norm if the system has commensurate delays, here meaning that the delays are all integer multiples of a basic delay. The formula is explicit and contains only elementary linear algebra operations applied to matrices of finite dimension. The delay Lyapunov equations are matrix boundary value problems. We show how to apply a spectral discretization scheme to these equations for the general, not necessarily commensurate, case. The convergence of spectral methods typically depend on the smoothness of the solution. To this end we describe the smoothness of the solution to the delay Lyapunov equations, for the commensurate as well as for the non-commensurate case. The smoothness properties allow us to completely predict the convergence order of the spectral method.
Publication status: published
KU Leuven publication type: IR
Appears in Collections:Numerical Analysis and Applied Mathematics Section

Files in This Item:
File Description Status SizeFormat
TW553.pdfDocument Published 304KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.