Title: Photoconversion of the Fluorescent Protein EosFP: A Hybrid potential simulation study reveals intersystem crossings
Authors: Lelimousin, Mickaël
Adam, Virgile
Nienhaus, G. Ulrich
Bourgeois, Dominique
Field, Martin J. # ×
Issue Date: 3-Nov-2009
Publisher: American Chemical Society
Series Title: Journal of the American Chemical Society vol:131 issue:46 pages:16814-16823
Abstract: Fluorescent proteins undergoing green to red photoconversion have proved to be essential tools in cell biology, notably in superlocalization nanoscopy. However, the exact mechanism governing photoconversion, which overall involves irreversible cleavage of the protein backbone and elongation of the chromophore π-conjugation, remains unclear. In this paper we present a theoretical investigation of the photoconversion reaction in the fluorescent protein EosFP, using excited-state hybrid quantum chemical and molecular mechanical potentials, in conjunction with reaction-path-finding techniques. Our results reveal a mechanism in which the hydroxybenzylidene moiety of the chromophore remains protonated and there is an excited state proton transfer from His62 to Phe61 that promotes peptide bond cleavage. Excitation of the neutral green form of EosFP to the first singlet excited state is followed by two intersystem crossing events, first to a triplet state and then back to the ground state singlet surface. From there, a number of rearrangements occur in the ground state and lead to the red form. Analyses of the structures and energies of the intermediates along the reaction path enable us to identify the critical role of the chromophore environment in promoting photoinduced backbone cleavage. Possible ways in which photoconvertible fluorescent proteins can be engineered to facilitate photoconversion are considered.
ISSN: 0002-7863
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
10-2009_JACS.pdfMain article Published 4633KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science