ITEM METADATA RECORD
Title: Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability
Authors: Belien, Tim ×
Joye, Iris
Delcour, Jan
Courtin, Christophe #
Issue Date: Oct-2009
Publisher: Oxford univ press
Series Title: Protein engineering design & selection vol:22 issue:10 pages:587-596
Abstract: Rational protein engineering was applied to improve the limited stability of the glycosyl hydrolase family 11 (GH11) endo-beta-1,4-xylanase from Bacillus subtilis under acidic conditions. Since the pH dependence of protein stability is governed by the ionisation states of the side chains of its titrable amino acid residues, we explored the strategy of changing pH-stability profiles by altering pK(a) values of key residues through in silico designed mutations. To this end, computational predictions and molecular modelling were carried out using the recently developed pKD software package. Four endoxylanase variants, in which the pK(a) values of either Asp4 and Asp11 or His149 were targeted to shift downwards through incorporation of three to five point mutations, were generated and recombinantly expressed in the cytoplasm of Escherichia coli. All four mutants showed considerably increased functional stability at acid pH levels. They retained similar to 30-70% and similar to 75-95% of their activity after incubation at pH 3 and 4, respectively, in comparison with only similar to 23% and similar to 57%, respectively, for the wild-type enzyme under the experimental conditions. No acidophilic adaptation of the catalytic activity had occurred. In addition, their functional stability and catalytic activity profiles under different temperature and ionic strength conditions were significantly altered. These findings contribute to general understanding of the molecular mechanisms governing the pH-dependent stability of GH11 proteins, and hence they can be applied to enhance the stability and effectiveness of many GH11 endoxylanases used in industry today.
ISSN: 1741-0126
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Food and Microbial Technology
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Belien 2009 PEDS 22 587-596.pdf Published 321KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science