Title: Use of ultrasound pattern recognition by expert operators to identify borderline ovarian tumors : a study of diagnostic performance and interobserver agreement
Authors: Yazbek, J ×
Ameye, Lieveke
Timmerman, Dirk
Testa, A.C
Valentin, L
Holland, T.K
Van Holsbeke, C
Jurkovic, D #
Issue Date: Jan-2010
Publisher: Blackwell Science
Series Title: Ultrasound in Obstetrics & Gynecology vol:35 issue:1 pages:84-88
Abstract: OBJECTIVE: To assess the accuracy and reproducibility of ultrasound 'pattern recognition' for the diagnosis of borderline ovarian tumors by asking experienced ultrasound operators to evaluate representative images of different types of adnexal tumor. METHODS: Digitally stored static two-dimensional B-mode images of representative cases of benign, borderline and invasive malignant ovarian tumors were independently assessed by three expert sonologists who had not performed the original real-time ultrasound examination. The outcome measures included diagnostic accuracy and interobserver agreement in the diagnosis of benign, borderline or invasive malignant ovarian tumors. RESULTS: One hundred and sixty-six cases were included in the final data analysis. A correct classification was made by all three experts in 83% of the primary invasive cancers, 76% of the benign masses and in 44% of the borderline malignant tumors (P < 0.01). The experts showed a tendency to misclassify borderline tumors as benign rather than primary invasive (ratio of 8 : 1 for Expert A, 4 : 1 for B and 6 : 1 for C). The interobserver agreement between any two experts was very good when they were tested for their ability to discriminate between invasive and non-invasive (benign and borderline) ovarian tumors (Cohen's kappa 0.85-0.88), but poorer for the discrimination between malignant (invasive and borderline) and benign tumors (kappa 0.70-0.78). CONCLUSIONS: The accuracy of ultrasound diagnosis of borderline tumors is lower in comparison with benign and invasive malignant lesions. The diagnostic performance and interobserver agreement are better when the outcomes are dichotomized into non-invasive and invasive malignant lesions, as opposed to the traditional diagnosis of benign and malignant tumors.
ISSN: 0960-7692
Publication status: published
KU Leuven publication type: IT
Appears in Collections:ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics
Basic Research in Gynaecology Section (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science