Title: c-Abl Phosphorylates Hdmx and Regulates Its Interaction with p53
Authors: Zuckerman, Valentina
Lenos, Kristiaan
Popowicz, Grzegorz M
Silberman, Isabelle
Grossman, Tamar
Marine, Chris
Holak, Tad A
Jochemsen, Aart G
Haupt, Ygal # ×
Issue Date: Feb-2009
Publisher: American Society for Biochemistry and Molecular Biology
Series Title: Journal of Biological Chemistry vol:284 issue:6 pages:4031-4039
Abstract: Upon exposure to DNA damage the p53 tumor suppressor is accumulated and activated to stall cellular growth. For this to occur, p53 must be relieved from its major inhibitors, Mdm2 (Hdm2 in humans) and Mdmx (Mdm4; Hdmx in humans). A key mechanism controlling this relief is the post-translational modifications of p53 and its inhibitors. We have previously demonstrated that the stress-activated tyrosine kinase, c-Abl, contributes to the relief of p53 from Hdm2. Because Hdmx is the major inhibitor of p53 activity, the additional possibility that c-Abl protects p53 through targeting Hdmx was explored in this study. c-Abl was found to interact with and to phosphorylate Hdmx. This phosphorylation was enhanced in response to DNA damage. Importantly, we mapped the sites of phosphorylation to the p53 binding domain of Hdmx. One of these phosphorylations, on tyrosine 99, inhibited Hdmx interaction with p53. This inhibition is consistent with the predicted role of this residue in the interaction with p53 based on the crystal structure of the interaction site. Our results show that c-Abl not only targets Hdm2, but also Hdmx, which together contribute to p53 activation in response to DNA damage.
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science