Title: A particle based model to simulate the micromechanics of single plant cells and aggregates
Authors: Van Liedekerke, Paul ×
Ghysels, Pieter
Tijskens, Engelbert
Samaey, Giovanni
Smeets, Bart
Roose, Dirk
Ramon, Herman #
Issue Date: 26-May-2010
Publisher: Institute of Physics Pub.
Series Title: Physical Biology vol:7
Article number: 026006
Abstract: This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a meshfree particle method to simulate the mechanics of both individual plant cells (Parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by Smoothed Particle Hydrodynamics (SPH), a meshfree method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times ($\unit[1]{\mu{s}}$ - $\unit[10]{\mu{s}}$) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.
ISSN: 1478-3967
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Mechatronics, Biostatistics and Sensors (MeBioS)
Numerical Analysis and Applied Mathematics Section
Mechanical Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
plant_cells_modeling.dvi Published 103KbTeX dviView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science