ITEM METADATA RECORD
Title: Decomposition of substituted alkoxy radicals-part I: a generalized structure-activity relationship for reaction barrier heights
Authors: Vereecken, Luc ×
Peeters, Jozef #
Issue Date: 1-Oct-2009
Publisher: Royal soc chemistry
Series Title: Physical Chemistry Chemical Physics vol:11 issue:40 pages:9062-9074
Abstract: An update and expansion of our readily applicable structure-activity relationship (SAR) for predicting the barrier height E-b to decomposition by beta C-C scission of (substituted) alkoxy radicals is presented. Such alkoxy radicals are key intermediates in the atmospheric oxidation of volatile organic compounds, and a correct description of their chemistry is vital to the understanding of atmospheric chemistry; nevertheless, experimental data on these reactions remain scarce. The SAR is based on quantum chemical characterizations of a large set of alkoxy radicals, and accommodates alkoxy radicals with alkyl- (-R), oxo-(=O), hydroxy- (-OH), hydroperoxy (-OOH), alkoxy (-OR), alkylperoxy- (-OOR), nitroso- (-NO), nitro- (-NO2), nitrosooxy- (-ONO), and nitroxy- (-ONO2) functionalities, as well as 3- to 6-membered rings and some unsaturated side chains. The SAR expresses the barrier height to decomposition, E-b = 17.9 kcal mol(-1) + Sigma N-s x F-s, as a linear function of the number N-s of these substituents on the relevant carbons, and the substituent-specific activities F-s derived from the quantum chemical calculations, allowing facile predictions based solely on the molecular structure. For low barriers, <= 7 kcal mol(-1), a simple curvature correction is required. The SAR-predicted barrier height E-b can be used to predict the high-pressure rate coefficient for alkoxy decomposition k(diss) at or around 298 K.
ISSN: 1463-9076
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Quantum Chemistry and Physical Chemistry Section
Chemistry - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science