This item still needs to be validated !
Title: Polyethylene glycol-derivatized cysteine-substitution variants of recombinant staphylokinase for single-bolus treatment of acute myocardial infarction
Authors: Collen, Desire ×
Sinnaeve, Peter
Demarsin, E
Moreau, H
De Maeyer, Marc
Jespers, L
Laroche, Yves
Van de Werf, Frans #
Issue Date: Oct-2000
Publisher: Lippincott williams & wilkins
Series Title: Circulation vol:102 issue:15 pages:1766-1772
Abstract: BACKGROUND: Thrombolytic therapy of acute myocardial infarction (AMI) is evolving toward bolus administration. Derivatization of proteins with polyethylene glycol (PEG) may reduce their clearance. METHODS AND RESULTS: A staphylokinase (SakSTAR) variant with 12 amino acid substitutions to reduce its antigenicity, SakSTAR (K35A, E65Q, K74R, E80A, D82A, T90A, E99D, T101S, E108A, K109A, K130T, K135R), and with Ser in position 3 mutated into Cys (code SY161), was derivatized with maleimide-PEG with M:(r) of 5,000 (P5), 10,000 (P10), or 20,000 (P20). The PEGylated variants recognized only one third of the antibodies elicited with wild-type SakSTAR in AMI patients. In experimental animals, plasma clearances were reduced 2. 5- to 5-fold with P5, 5- to 20-fold with P10, and 20-fold with P20, and bolus injection induced pulmonary plasma clot lysis at doses inversely related to their clearance. Intravenous bolus injection of 5 mg of the P5, P10, or P20 variants in AMI patients was associated with plasma half-lives (t(1/2alpha)) of 13, 30, and 120 minutes and clearances of 75, 43, and 8 mL/min, respectively, compared with 3 minutes and 360 mL/min for SakSTAR. Injection of 5 mg P5 variant restored TIMI-3 flow within 60 minutes in 14 of 18 AMI patients (78%, 95% CI 55% to 91%) and of 2.5 mg in 7 of 11 patients (63%, 95% CI 35% to 85%), both in the absence of fibrinogen degradation. The immunogenicity of the variants was significantly (P:<0.002) reduced. CONCLUSIONS: The staphylokinase variant SY161-P5, derivatized with one linear polyethylene glycol molecule of M:(r) 5000, is a promising fibrin-selective agent for single-bolus coronary thrombolysis.
ISSN: 0009-7322
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
Biochemistry, Molecular and Structural Biology Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science