Title: Different responsiveness of excitatory and inhibitory enteric motor neurons in the human esophagus to electrical field stimulation and to nicotine
Authors: González, Asensio A
Farre, Ricard
Clavé, Pere # ×
Issue Date: Jul-2004
Series Title: American Journal of Physiology. Gastrointestinal and Liver Physiology vol:287 issue:1 pages:G299-306
Abstract: To compare electrical field stimulation (EFS) with nicotine in the stimulation of excitatory and inhibitory enteric motoneurons (EMN) in the human esophagus, circular lower esophageal sphincter (LES), and circular and longitudinal esophageal body (EB) strips from 20 humans were studied in organ baths. Responses to EFS or nicotine (100 microM) were compared in basal conditions, after N(G)-nitro-l-arginine (l-NNA; 100 microM), and after l-NNA and apamin (1 microM). LES strips developed myogenic tone enhanced by TTX (5 microM) or l-NNA. EFS-LES relaxation was abolished by TTX, unaffected by hexamethonium (100 microM), and enhanced by atropine (3 microM). Nicotine-LES relaxation was higher than EFS relaxation, reduced by TTX or atropine, and blocked by hexamethonium. After l-NNA, EFS elicited a strong cholinergic contraction in circular LES and EB, and nicotine elicited a small relaxation in LES and no contractile effect in EB. After l-NNA and apamin, EFS elicited a strong cholinergic contraction in LES and EB, and nicotine elicited a weak contraction amounting to 6.64 +/- 3.19 and 9.20 +/- 5.51% of that induced by EFS. EFS elicited a contraction in longitudinal strips; after l-NNA and apamin, nicotine did not induce any response. Inhibitory EMN tonically inhibit myogenic LES tone and are efficiently stimulated both by EFS and nicotinic acetylcholine receptors (nAChRs) located in somatodendritic regions and nerve terminals, releasing nitric oxide and an apamin-sensitive neurotransmitter. In contrast, although esophageal excitatory EMN are efficiently stimulated by EFS, their stimulation through nAChRs is difficult and causes weak responses, suggesting the participation of nonnicotinic mechanisms in neurotransmission to excitatory EMN in human esophagus.
ISSN: 0193-1857
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Research in GastroIntestinal Disorders
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science