Title: Rotational diffusion of organic solutes in surfactant-block copolymer micelles: Role of electrostatic interactions and micellar hydration
Authors: Mali, Kunal
Dutt, G. B ×
Mukherjee, T #
Issue Date: May-2007
Publisher: Amer chemical soc
Series Title: Journal of physical chemistry b vol:111 issue:21 pages:5878-5884
Abstract: Rotational diffusion of a cationic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole, DMDPP has been examined in the surfactant-block copolymer system of sodium dodecyl sulfate (SDS) and poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20) (P123). In this study, the mole ratio of SDS to P123 was varied from 0 to 5 in steps of one unit, to investigate the role of electrostatic interactions and micellar hydration on solute rotation. It has been noticed that there is a significant enhancement in the average reorientation time of rhodamine 110, when [SDS]/[P123] increased from 0 to 1. This has been rationalized on the basis of migration of rhodamine 110 from the interfacial region of P123 micelles to the palisade layer (corona region) due to the electrostatic interaction with negatively charged head groups of SDS, whose tails are embedded in the polypropylene oxide core. Further increase in the mole ratio of SDS to P123 has resulted in only a marginal decrease in the average reorientation time of rhodamine 110, which is probably due to the solute molecule experiencing a microenvironment similar to the interfacial region of SDS micelles. In contrast, a gradual decrease has been observed in the average reorientation time of DMDPP with [SDS]/[P123], which is due to the increase in hydration levels in the palisade layer (corona region) of the micelle. These explanations are consistent with the structure of the SDS-P123 micellar system that has been deduced from neutron scattering and viscosity measurements recently.
ISSN: 1520-6106
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science