Title: Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications
Authors: Lammens, Willem ×
Le Roy, Katrien
Schroeven, Lindsey
Van Laere, André
Rabijns, Anja
Van den Ende, Wim #
Issue Date: Mar-2009
Publisher: Oxford univ press
Series Title: Journal of Experimental Botany vol:60 issue:3 pages:727-740
Abstract: Glycoside hydrolases (GH) have been shown to play unique roles in various biological processes like the biosynthesis of glycans, cell wall metabolism, plant defence, signalling, and the mobilization of storage reserves. To date, GH are divided into more than 100 families based upon their overall structure. GH32 and GH68 are combined in clan GH-J, not only harbouring typical hydrolases but also non-Leloir type transferases (fructosyltransferases), involved in fructan biosynthesis. This review summarizes the recent structure-function research progress on plant GH32 enzymes, and highlights the similarities and differences compared with the microbial GH32 and GH68 enzymes. A profound analysis of ligand-bound structures and site-directed mutagenesis experiments identified key residues in substrate (or inhibitor) binding and recognition. In particular, sucrose can bind as inhibitor in Cichorium intybus 1-FEH IIa, whereas it binds as substrate in Bacillus subtilis levansucrase and Arabidopsis thaliana cell wall invertase (AtcwINV1). In plant GH32, a single residue, the equivalent of Asp239 in AtcwINV1, appears to be important for sucrose stabilization in the active site and essential in determining sucrose donor specificity.
ISSN: 0022-0957
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Physiology of Plants and Micro-organisms Section - miscellaneous
Faculty of Pharmaceutical Sciences - miscellaneous
Laboratory for Molecular Plant Physiology (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science